Robust Speech Detection using SEM and SFN
نویسندگان
چکیده
Speech recognition, the problem of performance degradation is the difference between the model training and recognition environments. Silence features normalized using the method as a way to reduce the inconsistency of such an environment. Silence features normalized way of existing in the low signal-to-noise ratio. Increase the energy level of the silence interval for speech and non-speech classification accuracy due to the falling. There is a problem in the recognition performance is degraded. This paper proposed a robust speech detection method in noisy environments using a SFN(silence feature normalization) and SEM(speech energy maximize). In the high signal-to-noise ratio for the proposed method was used to maximize the characteristics receive less characterized the effects of noise by the speech energy. Cepstral feature distribution of speech and non-speech characteristics in the low signal-tonoise ratio and improves the recognition performance. Result of the recognition experiment, recognition performance improved compared to the conventional method.
منابع مشابه
Silence feature normalization for robust speech recognition in additive noise environments
In this paper, we propose a simple yet very effective feature compensation scheme for two energy-related features, the logarithmic energy (logE) and the zeroth cepstral coefficient (c0), in order to improve their noise robustness. This compensation scheme, named silence feature normalization (SFN), uses the high-pass filtered features as the indicator for speech/non-speech classification, and t...
متن کامل強健性語音辨識中能量相關特徵之改良式正規化技術的研究 (Study of the Improved Normalization Techniques of Energy-Related Features for Robust Speech Recognition) [In Chinese]
The rapid development of speech processing techniques has made themselves successfully applied in more and more applications, such as automatic dialing, voice-based information retrieval, and identity authentication. However, some unexpected variations in speech signals deteriorate the performance of a speech processing system, and thus relatively limit its application range. Among these variat...
متن کاملAn Information-Theoretic Discussion of Convolutional Bottleneck Features for Robust Speech Recognition
Convolutional Neural Networks (CNNs) have been shown their performance in speech recognition systems for extracting features, and also acoustic modeling. In addition, CNNs have been used for robust speech recognition and competitive results have been reported. Convolutive Bottleneck Network (CBN) is a kind of CNNs which has a bottleneck layer among its fully connected layers. The bottleneck fea...
متن کاملImproving the performance of MFCC for Persian robust speech recognition
The Mel Frequency cepstral coefficients are the most widely used feature in speech recognition but they are very sensitive to noise. In this paper to achieve a satisfactorily performance in Automatic Speech Recognition (ASR) applications we introduce a noise robust new set of MFCC vector estimated through following steps. First, spectral mean normalization is a pre-processing which applies to t...
متن کاملRobust Fault Detection on Boiler-turbine Unit Actuators Using Dynamic Neural Networks
Due to the important role of the boiler-turbine units in industries and electricity generation, it is important to diagnose different types of faults in different parts of boiler-turbine system. Different parts of a boiler-turbine system like the sensor or actuator or plant can be affected by various types of faults. In this paper, the effects of the occurrence of faults on the actuators are in...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2014